

Practical Engineering Information

Ejectors can use process vapors instead of steam as the motivating fluid. Gas compression (shown here) and steam desuperheating are other applications.

1.0 Standard Atmosphere	# of Stages	Operating Suction Press. (Hg Abs.)	Closed Test Suction Press (Hg Abs.)
(Std. Atm.) is equivalent to	1	3" and up	1½" -2 "
14.7 psi	2	10 mm - 4"	5 mm
or 33.9 ft of H.0	3	2 -15 mm	1 mm
or 29.921 in of Hg	4	0.25 - 3 mm	50 - 100 microns
or 760 mm of Hg	5	0.3 mm and less	5 - 10 micron
or 1.0332 kg/cm ²			
or 101.325 Kilopascals (Kpa)	Suc	tion or Steam	Line Sizing
or 1.01325 Bars	d	$= \sqrt{\frac{0.05}{0.05}}$	$\frac{1 \times W \times v}{V}$
Example Conversion Convert 7.0 psi to Bars: 7.0 psi X $\frac{1.01325 \text{ Bars}}{14.7 \text{ psi}} = 0.48 \text{ Bars}$	d = p $W = t d$ $v = s$ $V = v$	ipe i.d., inche otal flow, lb/hr pecific volume elocity (typically 200	s e, cu. ft./lb. ft./sec.)

t of ages	Operating Suction Press. (Hg Abs.)	Closed Test Suction Press. (Hg Abs.)
1	3" and up	1½" -2 "
2	10 mm - 4"	5 mm
3	2 -15 mm	1 mm
4	0.25 - 3 mm	50 - 100 microns
5	0.3 mm and less	5 - 10 microns

$$d = \sqrt{\frac{0.051 \times W \times v}{V}}$$

IDUSTRIES IN

ARTISAN

Talk to the people at **Jet - Vac**[®] For all steam jet and hybrid *ejector* systems CALL 781-893-6800 e-mail: jetvac@artisanind.com (FAX) 781-647-0143 www.artisanind.com 73 Pond Street Waltham, MA 02451-4594

a proven technology a proven supplier

Reliable and Proven Technology

Single and Multi-stage ejector systems

- No moving parts
- Nearly maintenance free
- Simple, quiet, compact No lubricating oil
- Needs only process, utility & structural connections

Only Jet-Vac manufactures interchangeable components in all materials of construction - allows retrofitting in corrosive environments.

Hybrid Systems - with liquid ring pump final stages

- Ideal for low level installations
- Reduced steam consumption
- Compact, modular package

- A Steam is fed at high pressure and relatively low velocity into the motive fluid connection
- **B** Steam expands through the ejector nozzle and changes into a high velocity and low pressure stream. If lower than atmospheric pressure, a vacuum is created.
- A low absolute pressure attracts the fluid to be pumped from the process connection.
- **B** Momentum is transferred between fluids, raising the pressure of the fluid being pumped.
- **F** The mixture of fluids then discharges to the atmosphere (or the next ejector in multi-stage designs).

Jet-Vac provides:

- computer analysis
- and HEI standards
- graphite lined

Right: Jet-Vac 2100 ton three stage water chilling system

Three Stage Hybrid System

Three Stage Ejector Packaged System

Consider all steam jet and hybrid ejector systems

Evaporation Stripping Refrigeration For: Filtration Distillation Crystallization Drying Degassing

With:

Low capital cost Corrosion resistance Minimal air pollution Any size load Low temperature operation

Reliability

Optimum steam jet system design requires the following information:

- Absolute suction pressure and temperature
- Gas and vapor flow (lb./ hour of each component in the process load)
- Maximum discharge pressure
- Maximum condensing water temperature (throughout the year)
- Minimum available steam pressure and temperature
- Materials of construction

Reliable and Proven Manufacturing

• Complete system responsibility • Complete vacuum packages including controls • Professional and timely support during inquiry, proposal, engineering, manufacturing and start-up • Modern, full function testing facilities • Custom engineering with state-of-the-art • Fabrication to ASME Code, ANSI B31.3, B31.1, TEMA Shell and tube or direct contact condensers • Steel, cast iron, stainless steel, hastelloy[®], titanium, or

Left: (foreground) Jet-Vac® hybrid vacuum system providing vacuum to Artisan Rototherm® thin film evaporator (background) that produces a free flowing powder.

Jet-Vac serves these industries

- Chemical
- Petrochemical
- Pharmaceutical
- Food
- Power